Rank-Based Estimation for Autoregressive Moving Average Time Series Models

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rank-Based Estimation for Autoregressive Moving Average Time Series Models

We establish asymptotic normality and consistency for rank-based estimators of autoregressive-moving average model parameters. The estimators are obtained by minimizing a rank-based residual dispersion function similar to the one given in L.A. Jaeckel [Estimating regression coefficients by minimizing the dispersion of the residuals, Ann. Math. Statist. 43 (1972) 1449–1458]. These estimators can...

متن کامل

Censored Time Series Analysis with Autoregressive Moving Average Models

Time series measurements are often observed with data irregularities, such as censoring due to a detection limit. Practitioners commonly disregard censored data cases which often result into biased estimates. We present an attractive remedy for handling autocorrelated censored data based on a class of autoregressive and moving average (ARMA) models. In particular, we introduce an imputation met...

متن کامل

Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals

When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...

متن کامل

Identification of Autoregressive Moving-Average Parameters of Time Series

,4bstme—A pmeedurefor sequentiaffy eatirnating the parameters and orders of mixed autoregmsive moving-average signaf modefs from tirneserfes data is presented. Iderrtfffftion ia performed by first fderstffying a purely asrtoregmwive aignaf model. Tire parametem and orders of tbe mixed autoregmsaive moving-average proeeaa are then gfven from tbe solutton of sfmple sdgebraic equations involving t...

متن کامل

Rank-Based Estimation for All-Pass Time Series Models

July 6, 2006 Abstract An autoregressive-moving average model in which all roots of the autoregressive polynomial are reciprocals of roots of the moving average polynomial and vice versa is called an all-pass time series model. All-pass models are useful for identifying and modeling noncausal and noninvertible autoregressive-moving average processes. We establish asymptotic normality and consist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Time Series Analysis

سال: 2007

ISSN: 0143-9782,1467-9892

DOI: 10.1111/j.1467-9892.2007.00545.x